Heat-shock protein 90 augments neuronal nitric oxide synthase activity by enhancing Ca2+/calmodulin binding.

نویسندگان

  • Y Song
  • J L Zweier
  • Y Xia
چکیده

Heat-shock protein 90 (hsp90) has been shown to facilitate neuronal NO synthase (nNOS, type 1) activity in vivo. But the direct effect of hsp90 on purified nNOS has not been determined yet. Moreover, the mechanism underlying the action of hsp90 is not known. nNOS activity is primarily initiated and regulated by the binding of Ca(2+)/calmodulin (CaM). Therefore, we explored whether hsp90 modulates nNOS activity by affecting CaM binding. Recombinant rat nNOS was purified from the stably transfected cells by affinity chromatography. hsp90 increased nNOS activity in a dose-dependent manner with an EC(50) of 24.1+/-6.4 nM. In the presence of hsp90, the CaM-nNOS dose-response curve was shifted markedly to the left and the maximal activity was also elevated. Further in vitro protein-binding experiments confirmed that hsp90 increased the binding of CaM to nNOS. Taken together, these data indicate that hsp90 directly augments nNOS catalytic function and that this effect is, at least partially, mediated by CaM-binding enhancement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Endothelial nitric oxide synthase regulation is altered in pancreas from cirrhotic rats.

AIM To determine whether biliary cirrhosis could induce pancreatic dysfunction such as modifications in endothelial nitric oxide synthase(eNOS) expression and whether the regulation of eNOS could be altered by the regulatory proteins caveolin and heat shock protein 90 (Hsp90), as well as by the modifications of calmodulin binding to eNOS. METHODS Immunoprecipitations and Western blotting anal...

متن کامل

Regulation of endothelial derived nitric oxide in health and disease.

Endothelial nitric oxide synthase (eNOS) is the primary physiological source of nitric oxide (NO) that regulates cardiovascular homeostasis. Historically eNOS has been thought to be a constitutively expressed enzyme regulated by calcium and calmodulin. However, in the last five years it is clear that eNOS activity and NO release can be regulated by post-translational control mechanisms (fatty a...

متن کامل

Differential effects of heat shock protein 90 and serine 1179 phosphorylation on endothelial nitric oxide synthase activity and on its cofactors

Endothelial nitric oxide synthase (eNOS) is responsible for maintaining systemic blood pressure, vascular remodeling and angiogenesis. Previous studies showed that bovine eNOS serine 1179 (Serine 1177 for human eNOS) phosphorylation enhanced NO synthesis. Meanwhile, heat shock protein 90 (Hsp90) plays a critical role in maintenance of eNOS structure and function. However, the regulatory differe...

متن کامل

Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases.

Vascular endothelial cells are directly and continuously exposed to fluid shear stress generated by blood flow. Shear stress regulates endothelial structure and function by controlling expression of mechanosensitive genes and production of vasoactive factors such as nitric oxide (NO). Though it is well known that shear stress stimulates NO production from endothelial nitric oxide synthase (eNOS...

متن کامل

Inducible nitric oxide synthase requires both the canonical calmodulin-binding domain and additional sequences in order to bind calmodulin and produce nitric oxide in the absence of free Ca2+.

All three mammalian isoforms of nitric oxide synthase (NOS) must bind calmodulin (CaM) for enzymatic activity. Only NOS2 (the inducible isoform, iNOS) does so at the low levels of free Ca2+ in resting cells and when almost all Ca2+ is chelated in cell-free preparations. To test directly whether the predicted CaM-binding region of mouse NOS2 accounts for its Ca2+ independence, we prepared chimer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 355 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2001